Decrease in Hydrogen Sulfide Content during the Final Stage of Beer Fermentation Due to Involvement of Yeast and Not Carbon Dioxide Gas Purging

Kaneo Oka,1,* Teruhiko Hayashi,2 Nobuya Matsumoto,3 and Hideshi Yanase4

Research Center, Suntory Limited, 1-1-1 Wakayamadai, Shimamoto-cho, Mishima-gun, Osaka 618-8503, Japan,1 Musashino Brewery, Suntory Limited, 3-1 Yazaki, Fuchu, Tokyo 183-8533, Japan,2 Department of Environmental Systems Engineering, Kochi University of Technology, Tosayamada-cho, Kami, Kochi 782-8502, Japan,1 and Department of Biotechnology, Tottori University, Tottori 680-8552, Japan4

Received 29 October 2007/Accepted 11 June 2008

We observed a rapid decrease in hydrogen sulfide content in the final stage of beer fermentation that was attributed to yeast and not the purging of carbon dioxide (CO2) gas. The well-known immature off-flavor in beer due to hydrogen sulfide (H2S) behavior during beer fermentation was closely investigated. The H2S decrease occurred during the final stage of fermentation when the CO2-evolution rate was extremely small and there was a decrease in the availability of fermentable sugars, suggesting that the exhaustion of fermentable sugars triggered the decrease in H2S. An H2S-balance analysis suggested that the H2S decrease might have been caused due to sulfide uptake by yeast. Further investigation showed that the time necessary for H2S to decrease below the sensory threshold was related to the number of suspended yeast cells. This supported the hypothesis that yeast cells contributed to the rapid decrease in H2S during the final stage of beer fermentation.

[Key words: hydrogen sulfide, beer, fermentation, yeast, fermentable sugar]

Hydrogen sulfide (H2S) is a well-known, volatile sulfur compound that strongly masks desirable characters in beer. When the concentration of H2S is greater than the sensory threshold of 0.005 mg/l, it imparts a rotten-egg smell and contributes to off-flavor (1). Many studies have examined the effects of yeast strains, fermentation conditions, and gene modification on the production of H2S during fermentation (2–6). During the cell maturation cycle, H2S seems to be released from yeast cells and assimilated during the budding cycle (7), but the decrease in H2S content during the late stage of beer fermentation, after yeast growth, is said to be mainly attributed to CO2 purging. Keeping the H2S concentration below the sensory threshold is one of the most important goals for high-quality beer production. A further goal is to shorten the maturation and fermentation periods to control the H2S concentration.

When the Suntory Kyushu-Kumamoto brewery was started, we experienced a sulfury note in our beer in lager tanks. We found that excessive amounts of H2S remained in the green beer at the end of fermentation. To reduce the high levels of H2S below the sensory threshold remaining in green beer, we had to extend the maturation time before filtration. In order to produce a high-quality beer within the designed brewing schedule, it was important to know how to reduce H2S formation. The results of this study indicate that a new mechanism, other than CO2 purging, was associated with the H2S decrease in the later stages of fermentation.

MATERIALS AND METHODS

Yeast We used Saccharomyces carlsbergensis strain BH-449 for the beer production.

Wort The wort was brewed with two-row barley malt and an original gravity of 12 w/w%. The target of limit attenuation (LA) was 85.5%, and it was controlled by saccharification temperature and the duration of the mashing process. If a higher LA of wort was necessary, then a longer saccharification rest was adopted.

Fermentation condition The dissolved oxygen content before yeast pitching was adjusted to 10 mg/l by aeration. The yeast was pitched at the rate of 12 × 106 cells/ml. The fermentation temperature was 12°C and there was no counter pressure in the head space of the fermentation tank. All trials were conducted in commercial-scale fermentation tanks and the batch size was 180 m3, unless indicated otherwise.

Hydrogen sulfide The H2S in the fermenting wort and beer was analyzed by the head-space GC/FPD method reported by Nagami et al. (8). The H2S in the exhausted carbon dioxide (CO2) was analyzed with a gas-detector tube system 4 LB (Gastec Corporation; Ayase, Kanagawa).

Yeast cell count The number of yeast cells was counted with a hemocytometer.

Apparent extract (A-Ex), alcohol concentration, original extract (O-Ex), and apparent attenuation (AA) of beer These were
analyzed by a SCABA Beer Analyzer (FOSS Analytical; Hilleroed, Denmark). The apparent extract concentration (A-Ex, w/w%) was calculated from the specific gravity of the sample and the alcohol concentration (w/w%) measured with a refractive-index detector and the EBC method (9).

Limit attenuation (LA) The LA (%) is an index of the degree of apparent fermentation of the forced-fermented sample with an excessive yeast dosage to exhaust fermentable sugars. The limit extract (L-Ex, w/w%) is equal to the A-Ex of the forced-fermented sample. LA is defined as:

\[\text{LA} = 100 \times \frac{\text{O-Ex} - \text{L-Ex}}{\text{O-Ex}} \] (9)

Fermentable carbohydrates in beer The fermentable carbohydrates in the beer were analyzed with HPLC, a refractive-index detector, and the EBC method (9).

Dissolved CO₂ concentration The dissolved CO₂ concentration was measured by a CO₂ Gehaltmeter, type DGM (Norit Haffmans; Venlo, Netherlands).

Decrease in hydrogen sulfide concentration with different numbers of suspended yeast cells following primary fermentation To test whether centrifugation could control the number of suspended yeast cells, green beer was drawn from the fermentation tanks into each of three pilot tanks (50 l) at the end of primary fermentation. As the beer was being transferred, the first tank was not centrifuged, whereas 85% of the beer and 95% of the beer in the second and third tanks, respectively, were centrifuged. The yeast cell counts in the three pilot tanks were 55, 7.0, and 3.5 × 10⁶ cells/ml respectively. The pilot tanks were maintained at 12 °C and the H₂S was periodically analyzed.

RESULTS AND DISCUSSION

Changes in hydrogen sulfide during beer fermentation When the Kyushu-Kumamoto brewery was started up, the fermentation period was 116 h, and the green beer was transferred to maturation tanks when the AA was 71%, but greater than 0.06 mg/l of H₂S still remained; therefore, the maturation time before filtration was extended to 4–7 d to decrease the H₂S concentration below the sensory threshold. To reduce H₂S production and to produce a high quality beer within the designed brewing schedule, we conducted multiple fermentation trials considering the dissolved oxygen in the wort, yeast pitching rate, fermentation temperature, pressure in the head space, and the duration of the fermentation period. We observed a rapid decrease in H₂S when the fermentation period was extended to 140 h (Fig. 1). In this trial, the H₂S concentration in the green beer at the end of fermentation was 0.014 mg/l, and the AA was 85%. Additional trials indicated that this method was reproducible.

Depletion of fermentable sugar as a key factor of the rapid decrease in hydrogen sulfide In this series of trials, we found an interesting feature related to the rapid H₂S decrease (Fig. 2A). Although the fermentation conditions were not intentionally changed, the yeast-growth rate was greater in one batch than the other. The maximum yeast-cell count of the faster batch and the normal batch were 52 × 10⁶ and 47 × 10⁶ cells/ml, respectively. The rapid decrease in H₂S in the normal batch started at approximately 140 h, whereas it started at approximately 120 h in the faster batch. In contrast, the rapid decrease in H₂S began at an AA of approximately 85% in both batches (Fig. 2B) suggesting that AA was associated with the decrease in H₂S and that the decrease should always begin at the same AA independent of...
A rapid H₂ assimilation rate dropped below 0.05 w/w%/h, we observed decrease in H₂ rest was adopted to get a higher LA of the wort. The rapid and 87.4% (test). In the test batch, a longer saccharification batches in which the LA of the worts were 85.5% (control) difference in %; vertical, H₂ with different wort limit attenuation. Axes: horizontal, AA in %; vertical, H₂ in mg/l. Symbols: open circles, H₂ changes in batch with 87.5% LA of wort.

FIG. 3. H₂ behaviors during late-stage fermentation in two batches with different wort limit attenuation. Axes: horizontal, AA in %; vertical, H₂ content in mg/l. Symbols: open circles, H₂ changes in batch with 85.4% LA of wort; closed triangles, H₂ changes in batch with 87.5% LA of wort.

the LA of the wort. We investigated the changes in H₂ in batches in which the LA of the worts were 85.5% (control) and 87.4% (test). In the test batch, a longer saccharification rest was adopted to get a higher LA of the wort. The rapid decrease in H₂ started at 85.7% AA in the test batch, whereas it started at 84.4% AA in the control batch. This confirmed that the H₂ decrease started at a higher AA in a higher LA wort (Fig. 3). Next, we calculated the attenuation difference (AD). The AD was defined as the difference between the LA of the wort and the AA. So the AD is similar to the residual, fermentable sugar at the end of the fermentation. The results showed that the rapid decrease in H₂ started at a similar AD in the test batch (1.7%) and the control (1.1%) in spite of the different LA (Fig. 4). This suggested that the residual fermentable sugar was related to the H₂ decrease during the final stage of fermentation. We investigated the relationship between the assimilation rates of the fermentable sugars (glucose, maltose, and maltotriose) and the rapid decrease in H₂. Once the fermentable-sugar assimilation rate dropped below 0.05 w/w%/h, we observed a rapid H₂ decrease (Fig. 5) suggesting that the decrease in H₂ was triggered by the depletion of fermentable sugars.

![Graph](image1.png)

FIG. 4. H₂ behaviors during late-stage fermentation in two batches with different wort limit attenuation. Axes: horizontal, attenuation difference in %; vertical, H₂ content in mg/l. Symbols: open circles, H₂ changes in batch with 85.4% LA of wort; closed triangles, H₂ changes in batch with 87.5% LA of wort.

![Graph](image2.png)

FIG. 5. H₂ behavior and fermentable sugar assimilation rate during late-stage fermentation. Axes: horizontal, attenuation difference in %; left vertical, H₂ content in mg/l; right vertical, fermentable sugar assimilation rate in w/w%/h. Symbols: open circles, H₂ content; closed triangles, fermentable sugar assimilation rate.

Contribution of yeast to the decrease in hydrogen sulfide during the final stage of fermentation

There are few studies available in the literature concerning the H₂ decrease at the end of beer fermentation, but it has been attributed to CO₂ purging (8). After 145 h, the rate of CO₂ evolved, calculated from the decrease in the A-Ex rate was at its lowest. We hypothesized that the purging effect should also become smaller because of the depletion of fermentable sugar (Fig. 6A); however, there was a dramatic decrease in H₂ at this stage (Fig. 6B). This result suggested that something more than CO₂ purging was contributing to the H₂ decrease. Based on this result, we suspected that yeast cells could be assimilating the H₂ in green beer. To clarify the contribution of yeast cells to the decrease in H₂, we investigated the balance of H₂ in the fermentation tank (Fig. 7). The H₂ balance in the fermentation tank was expressed as:

\[\Delta GB = Y - P \]

where \(\Delta GB \) was the change in H₂ in green beer during a defined period; \(Y \) was the H₂ released from yeast cells during a defined period, and \(P \) was the H₂ purged from the fermenting wort during a defined period. To obtain \(P \), we measured the amount of H₂ in exhaust CO₂ during a defined period, by a gas detector tube as described before. During alcohol fermentation, when one mole of alcohol is produced there is one mole of CO₂ produced at the same time. So, the exhausted CO₂ volume could be calculated from the A-Ex consumption rate, which is easily converted to the alcohol production rate. The fermentation volume was 180 m³. From these calculations, we obtained \(P \) in mg/h/m³ and the \(\Delta GB \) during the final stage of fermentation was measured. From these two calculations, we determined the contribution of the yeast to the H₂ decrease. The material-balance analysis showed that the change in H₂ in the green beer was \(-215\) mg/h/m³, and the H₂ purged was \(4\) mg/h/m³. From these data, we calculated the amount of H₂ released from the yeast cells, Y, as \(-211\) mg/h/m³.

\[Y = \Delta GB + P = -215 + 4 = -211 \text{ (mg/h/m³)} \]

The results showed that the yeast cells did not release H₂, but rather assimilated the H₂ during this stage. This demonstrated that the H₂ decrease was mainly through up-
These results contradict the generally accepted idea that the decrease in H$_2$S during late-stage fermentation is mainly attributable to CO$_2$ purging. We propose that yeast cells take up H$_2$S in green beer during the final stage of fermentation.

To support this hypothesis, we studied the relationship between the number of suspended yeast cells and the rate of H$_2$S decrease in a 50 l pilot-scale tank under conditions similar to the end of fermentation. The results showed that as the number of yeast cells increased, there was a higher rate of decrease in H$_2$S (Fig. 8).

We confirmed these findings using another lager yeast strain (data not shown). As described, it was possible to obtain acceptable levels of H$_2$S at the end of fermentation by extending the fermentation time to 48h. When the assimilation rate of fermentable sugars became less than 0.05 w/w%/h, there was rapid decrease in H$_2$S, which might have been caused by yeast uptake. If the fermentation time was not extended, then 4–7 additional days were necessary to obtain acceptable H$_2$S levels in the maturation tank. Although the fermentation and maturation temperatures were the same in this experiment, the number of yeast cells in the maturation tank was much smaller than in the fermentation tank even at the end of fermentation. This might be a possible reason for the difference in the decrease in H$_2$S efficiency.

It is generally accepted that during their growth phase, yeast take up sulfate and then reduce it to sulfite and then sulfide, which is used for sulfur-containing amino acid synthesis. When metabolism slows, sulfite and sulfide are released from the yeast cells. When budding occurs, the H$_2$S in the fermenting wort decreased very rapidly, probably through yeast uptake. Although the yeast in our experiments was not in the growth phase, there may have been enough amino acid biosynthesis such that the sulfide demand was larger than the intracellular sulfide supply through the reduction of sulfate and sulfite. Further studies will be needed to confirm this hypothesis.

REFERENCES